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On rings with divided nil ideal: a survey

Ayman Badawi

Abstract. Let R be a commutative ring with 1 6D 0 and Nil.R/ be its set of nilpotent elements.
Recall that a prime ideal of R is called a divided prime if P � .x/ for every x 2 R n P ; thus a
divided prime ideal is comparable to every ideal of R. In many articles, the author investigated the
class of rings H D ¹R j R is a commutative ring and Nil.R/ is a divided prime ideal ofRº (Observe
that if R is an integral domain, then R 2 H .) If R 2 H , then R is called a �-ring. Recently, David
Anderson and the author generalized the concept of PrRufer domains, Bezout domains, Dedekind
domains, and Krull domains to the context of rings that are in the class H . Also, Lucas and the
author generalized the concept of Mori domains to the context of rings that are in the class H . In
this paper, we state many of the main results on �-rings.
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1 Introduction

Let R be a commutative ring with 1 6D 0 and Nil.R/ be its set of nilpotent elements.Note 1
Nil, Rad,
Max, dim
upright

Recall from [26] and [7] that a prime ideal of R is called a divided prime if P � .x/
for every x 2 R n P ; thus a divided prime ideal is comparable to every ideal of R.
In [6], [8], [9], [10], and [11], the author investigated the class of rings H D ¹R j R
is a commutative ring and Nil.R/ is a divided prime ideal of Rº. (Observe that if R
is an integral domain, then R 2 H .) If R 2 H , then R is called a �-ring. Recently,
David Anderson and the author, [3] and [4], generalized the concept of PrRufer, BezoutNote 2

replace
Bezout by
Bézout?

domains, Dedekind domains, and Krull domains to the context of rings that are in the
class H . Also, Lucas and the author, [17], generalized the concept of Mori domain to
the context of rings that are in the class H . Yet, another paper by Dobbs and the author
[14] investigated going-down �-rings. In this paper, we state many of the main results
on �-rings.

We assume throughout that all rings are commutative with 1 6D 0. Let R be a
ring. Then T .R/ denotes the total quotient ring of R, and Z.R/ denotes the set of
zerodivisors of R. We start by recalling some background material. A non-zerodivisor
of a ring R is called a regular element and an ideal of R is said to be regular if it
contains a regular element. An ideal I of a ring R is said to be a nonnil ideal if
I 6� Nil.R/. If I is a nonnil ideal of a ring R 2 H , then Nil.R/ � I . In particular,
this holds if I is a regular ideal of a ring R 2 H .

Recall from [6] that for a ring R 2 H with total quotient ring T .R/, the map
� : T .R/ �! RNil.R/ such that �.a=b/ D a=b for a 2 R and b 2 R n Z.R/ is



22 A. Badawi

a ring homomorphism from T .R/ into RNil.R/, and � restricted to R is also a ring
homomorphism from R into RNil.R/ given by �.x/ D x=1 for every x 2 R. Ob-
serve that if R 2 H , then �.R/ 2 H , Ker.�/ � Nil.R/, Nil.T .R// D Nil.R/,
Nil.RNil.R// D �.Nil.R// D Nil.�.R// D Z.�.R//, T .�.R// D RNil.R/ is quasilo-
cal with maximal ideal Nil.�.R//, and RNil.R/=Nil.�.R// D T .�.R//=Nil.�.R// is
the quotient field of �.R/=Nil.�.R//.

Recall that an ideal I of a ring R is called a divisorial ideal of R if .I�1/�1 D I ,
where I�1 D ¹x 2 T .R/ j xI � Rº. If a ring R satisfies the ascending chain
condition (a.c.c.) on divisorial regular ideals of R, then R is called a Mori ring in the
sense of [46]. An integral domain R is called a Dedekind domain if every nonzero
ideal of R is invertible, i.e., if I is a nonzero ideal of R, then II�1 D R. If every
finitely generated nonzero ideal I of an integral domain R is invertible, then R is said
to be a Prüfer domain. If every finitely generated regular ideal of a ring R is invertible,
then R is said to be a Prüfer ring. If R is an integral domain and x�1 2 R for each
x 2 T .R/ n R, then R is called a valuation domain. Also, recall from [29] that an
integral domain R is called a Krull domain if R D \Vi , where each Vi is a discrete
valuation overring of R, and every nonzero element of R is a unit in all but finitely
many Vi . Many characterizations and properties of Dedekind and Krull domains are
given in [29], [30], and [40]. Recall from [32] that an integral domain R with quotient
field K is called a pseudo-valuation domain (PVD) in case each prime ideal of R is
strongly prime in the sense that xy 2 P , x 2 K, y 2 K implies that either x 2 P
or y 2 P . Every valuation domain is a pseudo-valuation domain. In [13], Anderson,
Dobbs and the author generalized the concept of pseudo-valuation rings to the context
of arbitrary rings. Recall from [13] that a prime ideal P of R is said to be strongly
prime if either aP � bR or bR � aP for all a; b 2 R. A ring R is said to be a
pseudo-valuation ring (PVR) if every prime ideal of R is a strongly prime ideal of R.

Throughout the paper, we will use the technique of idealization of a module to
construct examples. Recall that for an R-module B , the idealization of B over R is the
ring formed from R � B by defining addition and multiplication as .r; a/ C .s; b/ D
.r C s; a C b/ and .r; a/.s; b/ D .rs; rb C sa/, respectively. A standard notation for
the “idealized ring” is R.C/B . See [38] for basic properties of these rings.

2 �-pseudo-valuation rings and �-chained rings

In [6], the author generalized the concept of pseudo-valuation domains to the context
of rings that are in H . Recall from [6] that a ring R 2 H is said to be a �-pseudo-
valuation ring (�-PVR) if every nonnil prime ideal of R is a �-strongly prime ideal of
�.R/, in the sense that xy 2 �.P /, x 2 RNil.R/ , y 2 RNil.R/ (observe that RNil.R/ D

T .�.R/// implies that either x 2 �.P / or y 2 �.P /. We state some of the main
results on �-pseudo-valuation rings.

Theorem 2.1 ([8, Proposition 2.1]). Let D be a PVD and suppose that P;Q are prime
ideal of D such that P is properly contained in Q. Let d � 1 and choose x 2 D such
that Rad.xD/ D P . Then J D xdC1DQ is an ideal of D and hence D=J is a PVR
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with the following properties:

(i) Nil.R/ D P=J and xd 62 J ;

(ii) Z.R/ D Q=J .

Theorem 2.2 ([8, Corollary 2.7]). Let d � 2;D; P;Q; x; J , and R be as in Theorem
2.1. Set B D RNil.R/. Then the idealization ring R.C/B is a �-PVR that is not a PVR.

Theorem 2.3 ([10, Proposition 2.9], also see [23, Theorem 3.1]). Let R 2 H . Then R
is a �-PVR if and only if R=Nil.R/ is a PVD.

Recall from [9] that a ring R 2 H is said to be a �-chained ring (�-CR) if for each
x 2 RNil.R/ n �.R/ we have x�1 2 �.R/. A ring A is said to be a chained ring if for
every a; b 2 A, either a j b (in A) or b j a (in A).

Theorem 2.4 ([9, Corollary 2.7]). Let d � 2, D be a valuation domain, P;Q; x; J;R
be as in Theorem 2.1. Then R D D=J is a chained ring. Furthermore, if B D RNil.R/,
then the idealization ring R.C/B is a �-CR that is not a chained ring.

Theorem 2.5 ([9, Proposition 3.3]). Let R 2 H be a quasi-local ring with maximal
ideal M such that M contains a regular element of R . Then R is a �-PVR if and only
if .M WM/ D ¹x 2 T .R/ j xM �M º is a �-CR with maximal ideal M .

Theorem 2.6 ([3, Theorem 2.7]). Let R 2 H . Then R is a �-CR if and only if
R=Nil.R/ is a valuation domain.

Recall that B is said to be an overring of a ring A if B is a ring between A and
T .A/.

Theorem 2.7 ([10, Corrollary 3.17]). Let R 2 H be a �-PVR with maximal ideal M .
The following statements are equivalent:Note 3

replace ;
by . (at the
end of
items)?

(i) Every overring of R is a �-PVR;

(ii) RŒu� is a �-PVR for each u 2 .M WM/ nR;

(iii) RŒu� is quasi-local for each u 2 .M WM/ nR;

(iv) If B is an overring of R and B � .M W M/, then B is a �-PVR with maximal
ideal M ;

(v) If B is an overring of R and B � .M WM/, then B is quasi-local;

(vi) Every overring of R is quasi-local;

(vii) Every �-CR between R and T .R/ other than .M W M/ is of the form RP for
some non-maximal prime ideal P of R;

(viii) R0 D .M WM/ (where R0 is the integral closure of R inside T .R/).



24 A. Badawi

3 Nonnil Noetherian rings (�-Noetherian rings)

Recall that an ideal I of a ringR is said to be a nonnil ideal if I 6� Nil.R/. LetR 2 H .
Recall from [11] that R is said to be a a nonnil-Noetherian ring or just a �-Noetherian
ring as in [16] if each nonnil ideal of R is finitely generated. We have the following
results.

Theorem 3.1 ([11, Corollary 2.3]). Let R 2 H . If every nonnil prime ideal of R is
finitely generated, then R is a �-Noetherian ring.

Theorem 3.2 ([11, Theorem 2.4]). Let R 2 H . The following statements are equiva-
lent:

(i) R is a �-Noetherian ring;

(ii) R=Nil.R/ is a Noetherian domain;

(iii) �.R/=Nil.�.R// is a Noetherian domain;

(iv) �.R/ is a �-Noetherian ring.

Theorem 3.3 ([11, Theorem 2.6]). Let R 2 H . Suppose that each nonnil prime ideal
of R has a power that is finitely generated. Then R is a �-Noetherian ring.

Theorem 3.4 ([11, Theorem 2.7]). LetR 2 H . Suppose thatR is a �-Noetherian ring.
Then any localization of R is a �-Noetherian ring, and any localization of �.R/ is a
�-Noetherian ring.

Theorem 3.5 ([11, Theorem 2.9]). Let R 2 H . Suppose that R satisfies the ascending
chain condition on the nonnil finitely generated ideals. Then R is a �-Noetherian ring.

Theorem 3.6 ([11, Theorem 3.4]). LetR be a Noetherian domain with quotient fieldK
such that dim.R/ D 1 andR has infinitely many maximal ideals. ThenD D R.C/K 2
H is a �-Noetherian ring with Krull dimension one which is not a Noetherian ring. In
particular, Z.C/Q is a �-Noetherian ring with Krull dimension one which is not a
Noetherian ring (where Z is the set of all integer numbers with quotient field Q).

Theorem 3.7 ([11, Theorem 3.5]). LetR be a Noetherian domain with quotient fieldK
and Krull dimension n � 2. ThenD D R.C/K 2 H is a �-Noetherian ring with Krull
dimension n which is not a Noetherian ring. In particular, if K is the quotient field of
R D ZŒx1; : : : ; xn�1�, then R.C/K is a �-Noetherian ring with Krull dimension n
which is not a Noetherian ring.

In the following result, we show that a �-Noetherian ring is related to a pullback of
a Noetherian domain.
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Theorem 3.8 ([16, Theorem 2.2]). Let R 2 H . Then R is a �-Noetherian ring if
and only if �.R/ is ring-isomorphic to a ring A obtained from the following pullback
diagram:

A �! S D A=M

# #

T �! T=M

where T is a zero-dimensional quasilocal ring containing A with maximal ideal M ,
S D A=M is a Noetherian subring of T=M , the vertical arrows are the usual inclusion
maps, and the horizontal arrows are the usual surjective maps.

Theorem 3.9 ([16, Proposition 2.4]). LetR 2 H be a �-Noetherian ring and let I ¤ R
be an ideal of R. If I � Nil.R/, then R=I is a �-Noetherian ring. If I 6� Nil.R/, then
Nil.R/ � I and R=I is a Noetherian ring. Moreover, if Nil.R/ � I , then R=I is both
Noetherian and �-Noetherian if and only if I is either a prime ideal or a primary ideal
whose radical is a maximal ideal.

Theorem 3.10 ([16, Corollary 2.5]). Let R 2 H be a �-Noetherian ring. Then a
homomorphic image of R is either a �-Noetherian ring or a Noetherian ring.

Our next result shows that a �-Noetherian ring satisfies the conclusion of the Prin-
cipal Ideal Theorem (and the Generalized Principal Ideal Theorem).

Theorem 3.11 ([16, Theorem 2.7]). Let R 2 H be a �-Noetherian ring and let P be a
prime ideal. If P is minimal over an ideal generated by n or fewer elements, then the
height of P is less than or equal to n. In particular, each prime minimal over a nonnil
element of R has height one.

Other statements about primes of Noetherian rings that can be easily adapted to
statements about primes of �-Noetherian rings include the following.

Theorem 3.12 ([16, Proposition 2.8] and [40, Theorem 145]). Let R 2 H satisfy theNote 4
replaced
satisfies by
satisfy

ascending chain condition on radical ideals. If R has an infinite number of prime
ideals of height one, then their intersection is Nil.R/.

Theorem 3.13 ([16, Proposition 2.9]). Let R 2 H be a �-Noetherian ring and P be
a nonnil prime ideal of R of height n. Then there exist nonnil elements a1; : : : ; an in
R such that P is minimal over the ideal .a1; : : : ; an/ of R, and for any i (1 � i � n),
every (nonnil) prime ideal of R minimal over .a1; : : : ; ai / has height i .

Theorem 3.14 ([16, Proposition 2.10]). Let R 2 H be a �-Noetherian ring and let I
be an ideal of R generated by n elements with I ¤ R. If P is a prime ideal containing
I with P=I of height k, then the height of P is less than or equal to nC k.

Theorem 3.15 ([16, Proposition 3.1]). Let R 2 H be a �-Noetherian ring and let P
be a height n prime of R. If Q is a prime of RŒx� that contracts to P but properly
contains PRŒx�, then PRŒx� has height n and Q has height nC 1.
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Similar height restrictions exist for the primes of RŒx1; : : : ; xm�.

Theorem 3.16 ([16, Proposition 3.2]). LetR 2 H be a �-Noetherian ring and let P be
a height n prime ofR. IfQ is a prime ofRŒx1; : : : ; xm� that contracts to P but properly
contains PRŒx1; : : : ; xm�, then PRŒx1; : : : ; xm� has height n and Q has height at most
nCm. Moreover the prime PRŒx1; : : : ; xm�C .x1; : : : ; xm/RŒx1; : : : ; xm� has height
nCm.

Theorem 3.17 ([16, Corollary 3.3]). If R is a finite dimensional �-Noetherian ring of
dimension n, then dim.RŒx1; : : : ; xm�/ D nCm for each integer m > 0.

In our next result, we show that each ideal of RŒx� that contracts to a nonnil ideal
of R is finitely generated.

Theorem 3.18 ([16, Proposition 3.4]). Let R 2 H be a �-Noetherian ring. If I is an
ideal of RŒx1; : : : ; xn� for which I \ R is not contained in Nil.R/, then I is a finitely
generated ideal of RŒx1; : : : ; xn�.

Since three distinct comparable primes of RŒx� cannot contract to the same prime
of R, a consequence of Theorem 3.18 is that the search for primes of RŒx� that are not
finitely generated can be restricted to those of height one. A similar statement can be
made for primes of RŒx1; : : : ; xn�.

Theorem 3.19 ([16, Corollary 3.5]). Let R 2 H be a �-Noetherian ring and let P be
a prime of RŒx1; : : : ; xn�. If P has height greater than n, then P is finitely generated.

The ring in our next example shows that the converse of Theorem 3.18 does not
hold even for prime ideals.

Example 3.20 ([16, Example 3.6]). Let R D D.C/L be the idealization of L D
K..y//=D over D D KŒŒy��. Then R is a quasilocal �-Noetherian ring with nil-
radical Nil.R/ isomorphic to L. Consider the polynomial g.x/ D 1 � yx. Since the
coefficients of g generate D as an ideal and g is irreducible, P D gDŒx� is a height-
one principal prime of DŒx� with P \ D D .0/. Each nonzero element of L can be
written in the form d=yn where n is a positive integer, y denotes the image of y in
L and d D d0 C d1y C � � � C dn�1y

n�1 with d0 ¤ 0. Given such an element, let
f .x/ D 1 C yx C � � � C yn�1xn�1 2 LŒx�. Then g.x/.df .x/=yn/ D d=yn since
dyn=yn D 0 in L. It follows that g.x/RŒx� is a height-one principal prime of RŒx�
that contracts to Nil.R/.

4 �-Prüfer rings and �-Bezout rings

We say that a nonnil ideal I of R is �-invertible if �.I / is an invertible ideal of �.R/.
Recall from [3] that R is called a �-PrRufer ring if every finitely generated nonnil ideal
of R is �-invertible.
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Theorem 4.1 ([3, Corollary 2.10]). Let R 2 H . Then the following statements are
equivalent:

(i) R is a �-Prüfer ring;

(ii) �.R/ is a Prüfer ring;

(iii) �.R/=Nil.�.R// is a Prüfer domain;

(iv) RP is a �-CR for each prime ideal P of R;

(v) RP =Nil.RP / is a valuation domain for each prime ideal P of R;

(vi) RM=Nil.RM / is a valuation domain for each maximal ideal M of R;

(vii) RM is a �-CR for each maximal ideal M of R.

Theorem 4.2 ([3, Theorem 2.11]). Let R 2 H be a �-Prüfer ring and let S be a �-
chained overring of R. Then S D RP for some prime ideal P of R containing Z.R/.

The following is an example of a ring R 2 H such that R is a Prüfer ring, but R is
not a �-Prüfer ring.

Example 4.3 ([3, Example 2.15]). Let n � 1 and let D be a non-integrally closed
domain with quotient field K and Krull dimension n. Set R D D.C/.K=D/. Then
R 2 H and R is a Prüfer ring with Krull dimension n which is not a �-Prüfer ring.

Theorem 4.4 ([3, Theorem 2.17]). Let R 2 H . Then R is a �-Prüfer ring if and only
if every overring of �.R/ is integrally closed.

Example 4.5 ([3, Example 2.18]). Let n � 1 and let D be a Prüfer domain with quo-
tient fieldK and Krull dimension n. SetR D D.C/K. ThenR 2 H is a (non-domain)
�-Prüfer ring with Krull dimension n.

Recall from [21] that a ring R is said to be a pre-Prüfer ring if R=I is a Prüfer ring
for every nonzero proper ideal I of R.

Theorem 4.6 ([3, Theorem 2.19]). Let R 2 H such that Nil.R/ ¤ ¹0º. Then R is a
pre-Prüfer ring if and only if R is a �-Prüfer ring.

The following example shows that the hypothesis Nil.R/ ¤ ¹0º in Theorem 4.6 is
crucial.

Example 4.7 ([3, Example 2.20] and [42, Example 2.9]). Let D be a Prüfer domain
with quotient field F . For indeterminates X; Y , let K D F.Y / and let V be the
valuation domainKCXKŒŒX��. Then V is one-dimensional with maximal idealM D
XKŒŒX��. Set R D D CM . Then Nil.R/ D ¹0º, and R is a pre-Prüfer ring (domain)
which is not a Prüfer ring (domain). Hence R is not a �-Prüfer ring.
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Recall from [3] that a ringR 2 H is said to be a �-Bezout ring if �.I / is a principalNote 5
replaced
Besout by
Bezout

ideal of �.R/ for every finitely generated nonnil ideal I of R. A �-Bezout ring is a
�-Prüfer ring, but of course the converse is not true. A ring R is said to be a Bezout
ring if every finitely generated regular ideal of R is principal.

Theorem 4.8 ([3, Corollary 3.5]). Let R 2 H . Then the following statements are
equivalent:

(i) R is a �-Bezout ring;

(ii) R=Nil.R/ is a Bezout domain;

(iii) �.R/=Nil.�.R// is a Bezout domain;

(iv) �.R/ is a Bezout ring;

(v) Every finitely generated nonnil ideal of R is principal.

Theorem 4.9 ([3, Theorem 3.9]). Let R 2 H be quasi-local. Then R is a �-CR if and
only if R is a �-Bezout ring.

Example 4.10 ([3, Example 3.8]). Let n � 1 and let D be a Bezout domain with
quotient field K and Krull dimension n. Set R D D.C/K. Then R 2 H is a (non-
domain) �-Bezout ring with Krull dimension n.

5 �-Dedekind rings

Let R 2 H . We say that a nonnil ideal I of R is �-invertible if �.I / is an invertible
ideal of �.R/. If every nonnil ideal of R is �-invertible, then we say that R is a �-
Dedekind ring.

Theorem 5.1 ([4, Theorem 2.6]). Let R 2 H . Then R is a �-Dedekind ring if and only
if �.R/ is ring-isomorphic to a ring A obtained from the following pullback diagram:

A �! A=M

# #

T �! T=M

where T is a zero-dimensional quasilocal ring with maximal ideal M , A=M is a
Dedekind subring of T=M , the verical arrows are the usual inclusion maps, and the
horizontal arrows are the usual surjective maps.

Example 5.2 ([4, Example 2.7]). Let D be a Dedekind domain with quotient field K,
and let L be an extension ring of K. Set R D D.C/L. Then R 2 H and R is a
�-Dedekind ring which is not a Dedekind domain.

We say that a ring R 2 H is �-(completely) integrally closed if �.R/ is (com-
pletely) integrally closed in T .�.R// D RNil.R/. The following characterization of
�-Dedekind rings resembles that of Dedekind domains as in [40, Theorem 96].
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Theorem 5.3 ([4, Theorem 2.10]). Let R 2 H . Then the following statements are
equivalent:

(i) R is �-Dedekind;

(ii) R is nonnil-Noetherian (�-Noetherian), �-integrally closed, and of dimension
� 1;

(iii) R is nonnil-Noetherian and RM is a discrete �-chained ring for each maximal
ideal M of R.

A ring R is said to be a Dedekind ring if every nonzero ideal of R is invertible.

Theorem 5.4 ([4, Theorem 2.12]). Let R 2 H be a �-Dedekind ring. Then R is a
Dedekind ring.

The following is an example of a ring R 2 H which is a Dedekind ring but not a
�-Dedekind ring.

Example 5.5 ([4, Example 2.13]). Let D be a non-Dedekind domain with (proper)
quotient field K. Set R D D.C/K=D. Then R 2 H and R D T .R/. Hence R is a
Dedekind ring. Since R=Nil.R/ is ring-isomorphic to D, R is not a �-Dedekind ring
by [4, Theorem 2.5].

It is well known that an integral domain R is a Dedekind domain iff every nonzero
proper ideal of R is (uniquely) a product of prime ideals of R. We have the following
result.

Theorem 5.6 ([4, Theorem 2.15]). Let R 2 H . Then R is a �-Dedekind ring if and
only if every nonnil proper ideal of R is (uniquely) a product of nonnil prime ideals of
R.

Theorem 5.7 ([4, Theorem 2.16]). Let R 2 H . Then the following statements are
equivalent:

(i) R is a �-Dedekind ring;

(ii) Each nonnil proper principal ideal aR can be written in the form aR D

Q1 � � �Qn, where each Qi is a power of a nonnil prime ideal of R and the Qi ’s
are pairwise comaximal;

(iii) Each nonnil proper ideal I of R can be written in the form I D Q1 � � �Qn,
where each Qi is a power of a nonnil prime ideal of R and the Qi ’s are pairwise
comaximal.

Theorem 5.8 ([4, Theorem 2.20]). Let R 2 H . Then the following statements are
equivalent:

(i) R is a �-Dedekind ring;

(ii) Each nonnil prime ideal of R is �-invertible;

(iii) R is a nonnil-Noetherian ring and each nonnil maximal ideal ofR is �-invertible.
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Theorem 5.9 ([4, Theorem 2.23]). Let R 2 H be a �-Dedekind ring. Then every
overring of R is a �-Dedekind ring.

6 Factoring nonnil ideals into prime and invertible ideals

In this section, we give a generalization of the concept of factorization of ideals of an
integral domain into a finite product of invertible and prime ideals which was exten-
sively studied by Olberding [48] to the context of rings that are in the class H . Observe
that if R is an integral domain, then R 2 H . An ideal I of a ring R is said to be a
nonnil ideal if I 6� Nil.R/. Let R 2 H . Then R is said to be a �-ZPUI ring if each
nonnil ideal I of �.R/ can be written as I D JP1 � � �Pn, where J is an invertible ideal
of �.R/ and P1; : : : ; Pn are prime ideals of �.R/. If every nonnil ideal I of R can
be written as I D JP1 � � �Pn, where J is an invertible ideal of R and P1; : : : ; Pn are
prime ideals ofR, thenR is said to be a nonnil-ZPUI ring. Commutative �-ZPUI rings
that are in H are characterized in [12, Theorem 2.9]. Examples of �-ZPUI rings that
are not ZPUI rings are constructed in [12, Theorem 2.13]. It is shown in [12, Theorem
2.14] that a �-ZPUI ring is the pullback of a ZPUI domain. It is shown in [12, Theo-
rem 3.1] that a nonnil-ZPUI ring is a �-ZPUI ring. Examples of �-ZPUI rings that are
not nonnil-ZPUI rings are constructed in [12, Theorem 3.2]. We call a ring R 2 H a
nonnil-strongly discrete ring if R has no nonnil prime ideal P such that P 2 D P . A
ringR 2 H is said to be nonnil-h-local if each nonnil ideal ofR is contained in at most
finitely many maximal ideals of R and each nonnil prime ideal P of R is contained in
a unique maximal ideal of R.

Since the class of integral domains is a subset of H , the following result is a gener-
alization of [48, Theorem 2.3].

Theorem 6.1 ([12, Theorem 2.9]). Let R 2 H . Then the following statements are
equivalent:

(i) R is a �-ZPUI ring;

(ii) Every nonnil proper ideal of R can be written as a product of prime ideals of R
and a finitely generated ideal of R;

(iii) Every nonnil proper ideal of �.R/ can be written as a product of prime ideals of
�.R/ and a finitely generated ideal of �.R/;

(iv) R is a nonnil-strongly discrete nonnil-h-local �-Prüfer ring.

In the following result, we show that a nonnil-ZPUI ring is a �-ZPUI ring.

Theorem 6.2 ([12, Theorem 3.1]). Let R 2 H be a nonnil-ZPUI ring. Then R is a
�-ZPUI ring, and hence all the following statements hold: Note 6

replaced
period by
colon

(i) R=Nil.R/ is a ZPUI domain.

(ii) Every nonnil proper ideal of R can be written as a product of prime ideals of R
and a finitely generated ideal of R.
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(iii) Every nonnil proper ideal of �.R/ can be written as a product of prime ideals of
�.R/ and a finitely generated ideal of �.R/.

(iv) R is a nonnil-strongly discrete nonnil-h-local �-Prüfer ring.

(v) R is a nonnil-strongly discrete nonnil-h-local Prüfer ring.

Examples of �-ZPUI rings that are not nonnil-ZPUI rings are constructed in the
following result.

Theorem 6.3 ([12, Theorem 3.2]). Let A be a ZPUI domain that is not a Dedekind
domain with Krull dimension n � 1 and quotient field K. Then R D A.C/K=A 2 H
is a �-ZPUI ring with Krull dimension n which is not a nonnil-ZPUI ring.

Olberding in [48, Corollary 2.4] showed that for each n � 1, there exists a ZPUI
domain with Krull dimension n. A Dedekind domain is a trivial example of a ZPUI
domain. We have the following result.

Theorem 6.4 ([12, Theorem 2.13]). Let A be a ZPUI domain (i.e. A is a strongly
discrete h-local Prüfer domain by [48, Theorem2.3]) with Krull dimension n � 1 and
quotient field F , and let K be an extension ring of F (i.e. K is a ring and F � K).
Then R D A.C/K 2 H is a �-ZPUI ring with Krull dimension n that is not a ZPUI
ring.

In the following result, we show that a �-ZPUI ring is the pullback of a ZPUI
domain. A good paper for pullbacks is the article by Fontana [27].

Theorem 6.5 ([12, Theorem 2.14]). Let R 2 H . Then R is a �-ZPUI ring if and only
if �.R/ is ring-isomorphic to a ring A obtained from the following pullback diagram:

A �! A=M

# #

T �! T=M

where T is a zero-dimensional quasilocal ring with maximal idealM , A=M is a ZPUI
ring that is a subring of T=M , the vertical arrows are the usual inclusion maps, and
the horizontal arrows are the usual surjective maps.

7 �-Krull rings

We say that a ring R 2 H is a discrete �-chained ring if R is a �-chained ring with
at most one nonnil prime ideal and every nonnil ideal of R is principal. Recall from
[4] that a ring R 2 H is said to be a �-Krull ring if �.R/ D \Vi , where each Vi is a
discrete �-chained overring of �.R/, and for every nonnilpotent element x 2 R, �.x/
is a unit in all but finitely many Vi .

Theorem 7.1 ([4, Theorem 3.1]). Let R 2 H . Then R is a �-Krull ring if and only if
R=Nil.R/ is a Krull domain.
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We have the following pullback characterization of �-Krull rings.

Theorem 7.2 ([4, Theorem 3.2]). Let R 2 H . Then R is a �-Krull ring if and only if
�.R/ is ring-isomorphic to a ring A obtained from the following pullback diagram:

A �! A=M

# #

T �! T=M

where T is a zero-dimensional quasilocal ring with maximal idealM , A=M is a Krull
subring of T=M , the verical arrows are the usual inclusion maps, and the horizontal
arrows are the usual surjective maps.

Example 7.3 ([4, Example 3.3]). Let D be a Krull domain with quotient field K, and
let L be a ring extension ofK. Set R D D.C/L. Then R 2 H and R is a �-Krull ring
which is not a Krull domain.

It is well known [29, Theorem 3.6] that an integral domain R is a Krull domain
if and only if R is a completely integrally closed Mori domain. We have a similar
characterization for �-Krull rings.

Theorem 7.4 ([4, Theorem 3.4]). Let R 2 H . Then R is a �-Krull ring if and only if
R is a �-completely integrally closed �-Mori ring.

Theorem 7.5 ([4, Theorem 3.5]). Let R 2 H be a �-Krull ring which is not zero-
dimensional. Then the following statements are equivalent:

(i) R is a �-Pr Rufer ring;

(ii) R is a �-Dedekind ring;

(iii) R is one-dimensional.

It is well known that if R is a Noetherian domain, then R0 is a Krull domain. In
particular, an integrally closed Noetherian domain is a Krull domain. We have the
following analogous result for nonnil-Noetherian rings.

Theorem 7.6 ([4, Theorem 3.6]). LetR 2 H be a nonnil-Noetherian ring. Then �.R/0

is a �-Krull ring. In particular, if R is a �-integrally closed nonnil-Noetherian ring,
then R is a �-Krull ring.

It is known [40, Problem 8, page 83] that if R is a Krull domain in which all prime
ideals of height � 2 are finitely generated, then R is a Noetherian domain. We have
the following analogous result for nonnil-Noetherian rings.

Theorem 7.7 ([4, Theorem 3.7]). Let R 2 H be a �-Krull ring in which all prime
ideals of R with height � 2 are finitely generated. Then R is a nonnil-Noetherian ring.
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For a ring R 2 H , let �R denotes the ring-homomorphism � W T .R/ �! RNil.R/.
It is well known [29, Proposition 1.9, page 8] that an integral domain R is a Krull
domain if and only if R satisfies the following three conditions:

(i) RP is a discrete valuation domain for every height-one prime ideal P of R;

(ii) R D \RP , the intersection being taken over all height-one prime ideals P of R;

(iii) Each nonzero element of R is in only a finite number of height-one prime ideals
of R, i.e., each nonzero element of R is a unit in all but finitely many RP , where
P is a height-one prime ideal of R.

The following result is an analog of [29, Proposition 1.9, page 8].

Theorem 7.8 ([4, Theorem 3.9]). Let R 2 H with dim.R/ � 1. Then R is a �-Krull
ring if and only if R satisfies the following three conditions:

(i) RP is a discrete �-chained ring for every height-one prime ideal P of R;

(ii) �R.R/ D \�RP .RP /, the intersection being taken over all height-one prime
ideals P of R;

(iii) Each nonnilpotent element of R lies in only a finite number of height-one prime
ideals of R, i.e., each nonnilpotent element of R is a unit in all but finitely many
RP , where P is a height-one prime ideal of R.

Recall that a ring R is called a Marot ring if each regular ideal of R is generated by
its set of regular elements. A Marot ring is called a Krull ring in the sense of [38, page
37] if either R D T .R/ or if there exists a family ¹Viº of discrete rank-one valuation
rings such that:

(i) R is the intersection of the valuation rings ¹Viº;

(ii) Each regular element of T .R/ is a unit in all but finitely many Vi .

The following is an example of a ringR 2 H which is a Krull ring but not a �-Krull
ring.

Example 7.9 ([4, Example 3.12]). LetD be a non-Krull domain with (proper) quotient
field K. Set R D D.C/K=D. Then R 2 H and R D T .R/. Hence R is a Krull ring.
Since R=Nil.R/ is ring-isomorphic to D, R is not a �-Krull ring by Theorem 7.1.

8 �-Mori rings

According to [46], a ringR is called a Mori ring if it satisfies a.c.c. on divisorial regular
ideals. Let R 2 H . A nonnil ideal I of R is �-divisorial if �.I / is a divisorial ideal of
�.R/, and R is a �-Mori ring if it satisfies a.c.c. on �-divisorial ideals.

The following is a characterization of �-Mori rings in terms of Mori rings in the
sense of [46].
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Theorem 8.1 ([17, Theorem 2.2]). Let R 2 H . Then R is a �-Mori ring if and only if
�.R/ is a Mori ring.

The following is a characterization of �-Mori rings in terms of Mori domains.

Theorem 8.2 ([17, Theorem 2.5]). Let R 2 H . Then R is a �-Mori ring if and only if
R=Nil.R/ is a Mori domain.

Theorem 8.3 ([17, Theorem 2.7]). LetR 2 H be a �-Mori ring. ThenR satisfies a.c.c.
on nonnil divisorial ideals of R. In particular, R is a Mori ring.

The converse of Theorem 8.3 is not valid as it can be seen by the following example.

Example 8.4 ([17, Example 2.8]). Let D be an integral domain with quotient field L
which is not a Mori domain and set R D D.C/.L=D/, the idealization of L=D over
D. Then R 2 H is a Mori ring which is not a �-Mori ring.

Example 8.18 shows how to construct a nontrivial Mori ring (i.e., where R ¤
T .R/) in H which is not �-Mori.

Theorem 8.5 ([17, Theorem 2.10]). Let R 2 H be a �-Noetherian ring. Then R is
both a �-Mori ring and a Mori ring.

Given a Krull domain of the formE D LCM , whereL is a field andM a maximal
ideal of E, any subfieldK of L gives rise to a Mori domainD D KCM . If L is not a
finite algebraic extension ofK, thenD cannot be Noetherian (see [19, Section 4]). We
make use of this in our next example to build a �-Mori ring which is neither an integral
domain nor a �-Noetherian.

Example 8.6 ([17, Example 2.11]). Let K be the quotient field of the ring D D

Q C XRŒŒX�� and set R D D.C/K, the idealization of K over D. It is easy to
see that Nil.R/ D ¹0º.C/K is a divided prime ideal of R. Hence R 2 H . Now
since R=Nil.R/ is ring-isomorphic toD andD is a Mori domain but not a Noetherian
domain, we conclude that R is a �-Mori ring which is not a �-Noetherian ring.

In light of Example 8.6, �-Mori rings can be constructed as in the following exam-
ple.

Example 8.7 ([17, Example 2.12]). LetD be a Mori domain with quotient fieldK and
let L be an extension ring of K. Then R D D.C/L, the idealization of L over D, is
in H . Moreover, R is a �-Mori ring since R=Nil.R/ is ring-isomorphic to D which is
a Mori domain.

The following result is a generalization of [54, Theorem 1]. An analogous result
holds for Mori rings when the chains under consideration are restricted to regular divi-
sorial ideals whose intersection is regular [46, Theorem 2.22].
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Theorem 8.8 ([17, Theorem 2.13]). Let R 2 H . Then R is a �-Mori ring if and only
if whenever ¹Imº is a descending chain of nonnil �-divisorial ideals of R such that
\ Im 6D Nil.R/, then ¹Imº is a finite set.

Let D be an integral domain with quotient field K. If I is an ideal of D, then
.D W I / D ¹x 2 K j xI � Dº. Mori domains can be characterized by the property
that for each nonzero ideal I , there is a finitely generated ideal J � I such that
.D W I / D .D W J / (equivalently, Iv D Jv) ([51, Theorem 1]). Our next result
generalizes this result to �-Mori rings.

Theorem 8.9 ([17, Theorem 2.14]). Let R 2 H . Then R is a �-Mori ring if and only
if for any nonnil ideal I of R, there exists a nonnil finitely generated ideal J , J � I ,
such that �.J /�1 D �.I /�1, equivalently, �.J /v D �.I /v .

In the following theorem we combine all of the different characterizations of �-
Mori rings stated in this section.

Theorem 8.10 ([17, Corollary 2.15]). Let R 2 H . The following statements are equiv-
alent:

(i) R is a �-Mori ring;

(ii) R=Nil.R/ is a Mori domain;

(iii) �.R/=Nil.�.R// is a Mori domain;

(iv) �.R/ is a Mori ring.

(v) If ¹Imº is a descending chain of nonnil �-divisorial ideals of R such that \ Im 6D
Nil.R/, then ¹Imº is a finite set;

(vi) For each nonnil ideal I of R, there exists a nonnil finitely generated ideal J ,
J � I , such that �.J /�1 D �.I /�1;

(vii) For each nonnil ideal I of R, there exists a nonnil finitely generated ideal J ,
J � I , such that �.J /v D �.I /v .

The following result is a generalization of [54, Theorem 5].

Theorem 8.11 ([17, Theorem 3.1]). Let R 2 H be a �-Mori ring and I be a nonzero
�-divisorial ideal of R. Then I contains a power of its radical.

We recall a few definitions regarding special types of ideals in integral domains.
For a nonzero ideal I of an integral domain D, I is said to be strong if II�1 D I ,
strongly divisorial if it is both strong and divisorial, and v-invertible if .II�1/v D D.
We will extend these concepts to the rings in H .

Let I be a nonnil ideal of a ring R 2 H . We say that I is strong if II�1 D I ,
�-strong if �.I /�.I /�1 D �.I /, strongly divisorial if it is both strong and divisorial,
strongly �-divisorial if it is both �-strong and �-divisorial, v-invertible if .II�1/v D R
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and �-v-invertible if .�.I /�.I /�1/v D �.R/. Obviously, I is �-strong, strongly �-
divisorial or �-v-invertible if and only if �.I / is, respectively, strong, strongly diviso-
rial or v-invertible.

In [51, Proposition 1], J. Querré proved that if P is a prime ideal of a Mori domain
D, then P is divisorial when it is height one. In the same proposition, he incorrectly
asserted that if the height of P is larger than one and P�1 properly containsD, then P
is strongly divisorial. While it is true that such a prime must be strong, a (Noetherian)
counterexample to the full statement can be found in [34]. What one can say is that Pv
will be strongly divisorial (see [5]).

Theorem 8.12 ([17, Theorem 3.3]). Let R 2 H be a �-Mori ring and P be a (nonnil)
prime ideal of R. If ht.P / D 1, then P is �-divisorial. If ht.P / � 2, then either Note 7

ht upright�.P /�1 D �.R/ or �.P /v is strongly divisorial.

For a �-Mori ring R 2 H , let Dm.R/ denote the maximal �-divisorial ideals of
R; i.e., the set of nonnil ideals of R maximal with respect to being �-divisorial. The
following result generalizes [25, Theorem 2.3] and [19, Proposition 2.1].

Theorem 8.13 ([17, Theorem 3.4]). Let R 2 H be a �-Mori ring such that Nil.R/ is
not the maximal ideal of R. Then the following hold: Note 8

replaced
period by
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(a) The set Dm.R/ is nonempty. Moreover, M 2 Dm.R/ if and only if M=Nil.R/ is
a maximal divisorial ideal of R=Nil.R/.

(b) Every ideal of Dm.R/ is prime.

(c) Every nonnilpotent nonunit element of R is contained in a finite number of maxi-
mal �-divisorial ideals.

As with a nonempty subset of R, a nonempty set of ideals S is multiplicative if (i)
the zero ideal is not contained in S, and (ii) for each I and J in S, the product IJ is
in S . Such a set S is referred to as a multiplicative system of ideals and it gives rise
to a generalized ring of quotients RS D ¹t 2 T .R/ j tI � R for some I 2 Sº. For
each prime ideal P , R.P / D ¹t 2 T .R/ j st 2 R for some s 2 RnP º D RS, where
S is the set of ideals (including R) that are not contained in P . Note that in general a
localization of a Mori ring need not be Mori (see Example 8.18 below). On the other
hand, if S is a multiplicative system of regular ideals, then RS is a Mori ring whenever
R is Mori ring ([46, Theorem 2.13]).

Theorem 8.14 ([17, Theorem 3.5], and [17, Theorem 2.2]). Let R be a �-Mori ring.
Then

(a) RS is a �-Mori ring for each multiplicative set S .

(b) RP is a �-Mori ring for each prime P .

(c) RS is a �-Mori ring for each multiplicative system of ideals S .

(d) R.P / is a �-Mori ring for each prime ideal P .
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One of the well-known characterizations of Mori domains is that an integral domain
D is a Mori domain if and only if (i)DM is a Mori domain for each maximal divisorial
ideal M , (ii) D D \DM where the M range over the set of maximal divisorial ideals
of D, and (iii) each nonzero element is contained in at most finitely many maximal
divisorial ideals ([52, Théorème 2.1] and [54, Théorème I.2]). A similar statement
holds for �-Mori rings. Note that in condition (ii), if D has no maximal divisorial
ideals, the intersection is assumed to be the quotient field of D. For the equivalence,
that means that D is its own quotient field. The analogous statement is that if Dm is
empty, then we have R D T .R/ D RNil.R/ with Nil.R/ the maximal ideal.

Theorem 8.15 ([17, Theorem 3.6]). Let R 2 H . Then the following statements areNote 9
added
‘state-
ments’

equivalent:

(i) R is a �-Mori ring;

(ii) (a)RM is a �-Mori ring for each maximal �-divisorialM , (b) �.R/ D \�.R/�.M/Note 10
replaced
.i/ etc. by
(a) etc.;
add some
wording to
improve
line break?

where theM range over the set of maximal �-divisorial ideals, and (c) each non-
nil element (ideal) is contained in at most finitely many maximal �-divisorial
ideals;

(iii) (a)R.M/ is a �-Mori ring for each maximal �-divisorialM , (b) �.R/ D \�.R/�.M/

where theM range over the set of maximal �-divisorial ideals, and (c) each non-
nil element (ideal) is contained in at most finitely many maximal �-divisorial
ideals.

In [19], V. Barucci and S. Gabelli proved that if P is a maximal divisorial ideal
of a Mori domain D, then the following three conditions are equivalent: (1) DP is a
discrete rank-one valuation domain, (2) P is v-invertible, and (3) P is not strong [19,
Theorem 2.5]. A similar result holds for �-Mori rings.

Theorem 8.16 ([17, Theorem 3.9]). Let R 2 H be a �-Mori ring and P 2 Dm.R/.
Then the following statements are equivalent:

(i) RP is a discrete rank-one �-chained ring;

(ii) P is �-v-invertible;

(iii) P is not �-strong.

Recall from [38] that if f .x/ 2 RŒx�, then c.f / denotes the ideal ofR generated by
the coefficients of f .x/, and R.x/ denotes the quotient ring RŒx�S of the polynomial
ring RŒx�, where S is the set of f 2 RŒx� such that c.f / D R.

Theorem 8.17 ([17, Theorem 4.5]). LetR be an integrally closed ring for which Nil.R/ DNote 11
replace for
which by
with to
improve
line
break?;
added
‘state-
ments’;
may we
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etc. by (i)
etc.?

Z.R/ ¤ ¹0º. Then the following statements are equivalent:

(1) R is �-Mori and the nilradical of T .RŒx�/ is an ideal of R.x/;

(2) R.x/ is �-Mori;
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(3) R.x/ is �-Noetherian;

(4) R is �-Noetherian and the nilradical of T .RŒx�/ is an ideal of R.x/;

(5) Each regular ideal of R is invertible;

(6) R=Nil.R/ is a Dedekind domain;

(7) R is a �-Dedekind ring.

As mentioned above, a Mori ring is said to be nontrivial if it is properly contained
in its total quotient ring. Our next example is of a nontrival Mori ring that is in the set
H but is not a �-Mori ring.

Example 8.18 ([17, Example 5.3]). Let E be a Dedekind domain with a maximal ideal
M such that no power of M is principal (equivalently, M generates an infinite cyclic
subgroup of the class group) and let D D E C xF Œx�, where F is the quotient field of
E. Let P D ¹ND j N 2 Max.E/n¹M ºº, B D

P
F=DP˛ where each P˛ 2 P , and

let R D D.C/B . Then the following hold: Note 12
replaced
period by
colon

(a) If J is a regular ideal, then J D I.C/B D IR for some ideal I that contains
a polynomial in D whose constant term is a unit of E. Moreover, the ideal I
is principal and factors uniquely as P r1

1 � � �P
rn
n , where the Pi are the height-one

maximal ideals of D that contain I .

(b) R ¤ T .R/ since, for example, the element .1 C x; 0/ is a regular element of R
that is not a unit.

(c) R is a nontrivial Mori ring but R is not �-Mori.

(d) MR is a maximal �-divisorial ideal of R, but RMR is not a Mori ring.
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